

The Brewers of Europe

22-26 MAY 2011 GLASGOW BEBC SIRD CONGRESS EUROPEAN BREWERY CONVENTION

EFFICIENT BEER RECOVERY FROM SURPLUS YEAST

EBC Congress 2011 22-26 May 2011, Glasgow

May 25, 2011 Dr. Gerald Zanker Brewery Manager Brau Union Puntigam, Graz Austria

INTRODUCTION

Improved Surplus Beer Mangement
 Reduction of extract loss achieved

4,5%

Large part of the losses are related to beer content of surplus yeast slurry

INTRODUCTION

Output approx. 1,1 mil. hl p.a.
Yeast slurry accumulated: 20.000 hl
Gravity: 10% (+/- 1%)
Dry matter: 12% (+/- 1%)
Application: animal feed
Farmers now prefer solid feed
Less commercial benefit

PROCESS

- Beer and yeast separated on a weekly basis
- Yeast sediment and sludge collected from Monday to Friday
- Dilution to 10% gravity with water
- Pumping of yeast slurry every 2 hours at a rate 200 hl/h for 5 – 10 min.
- Cooling to grant 4°C
- Pump switched off on Friday midday
- Monday morning actual separation phase beer from yeast slurry
- Beer yielded is flash pasteurised at 80 p units and distributed into fermentation tanks

CHALLENGE

- Add a food grade flocculant to raise the dry matter of the yeast slurry
- Choice made according to Austrian food grade codex and Heineken approval standards
- Separation of beer takes place at 4°C
- The beer is sensorically without fault
- Dead yeast cell analysis show to be below 5%
- No negative influence from fermentation by products
- No negative influence from relevant ageing carbonyls

The Brewers of Europe

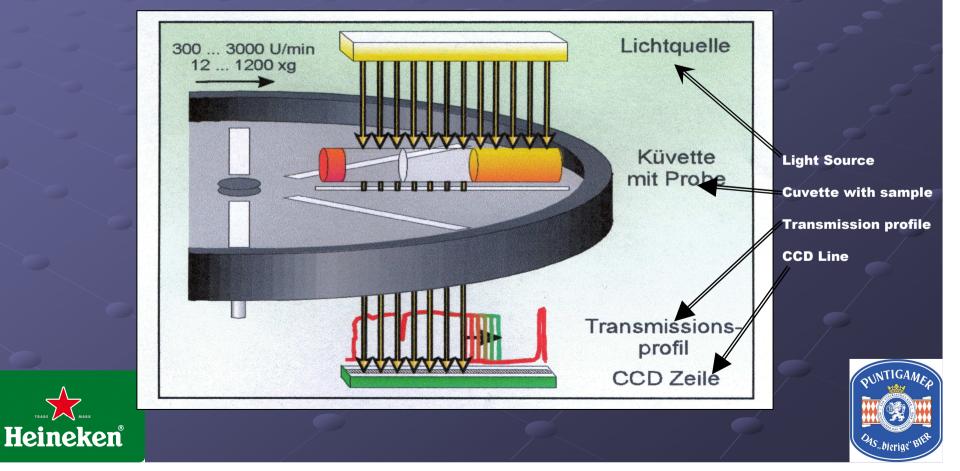
22-26 MAY 2011 GLASGOW BEBC S3RD CONGRESS EUROPEAN BREWERY CONVENTION

CHOOSING THE CORRECT FLOCCULANT
Imhoff cones used for a rough selection
Sedimentation behaviour tested

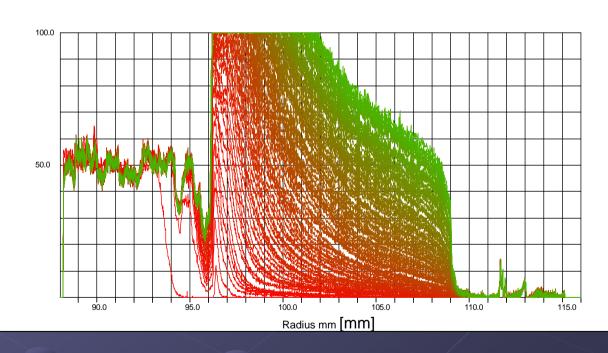
EBC Congress 2011 22-26 May 2011, Glasgow

Microscopical examination

Particle size determination



SEDIMENTATION METHOD



SEDIMENTATION METHOD

The de-mixing graph shows the phase border between sediment and the clarifying phase as a function of time. The rise of the de-mixing curve shows the speed of sedimentation in [µm/s].

SURFACE AREA CHARGE

Measurment of zeta potential

JOANNUM RESEAR

Mütek PCD 02

00

anionic
 mutek

MICROSCOPIC OBSERVATION OF YEAST CELLS

The Brewers of Europe

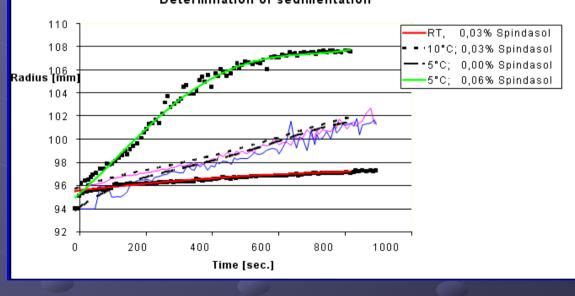
EBC Congress 2011 22-26 May 2011, Glasgow

RESULTS

	Spindasol SB3 conc. [%]	Temp = 5° C Q	Temp = 10° C Q	Temp = 25° C Q
		[C/g]	[C/g]	[C/g]
				2 2
				2
Yeast sample	0,00	-2,37	-2,26	-1,30
			p p	
	0,03	-1,78	-2,65	-1,44
				9
		\leq		
	0,06	-2,29	-2,57	-1,88
				PUNT
raat ante ante ante ante ante ante ante a	\mathbf{Q}			QASbie

DETERMINATION OF ZETA POTENTIAL

	Samples		Zetapo	tential [mV]	2
	sample 1	non treated	-18,9 +/	- 0,32	5
	+0,03 % S	PINDASOL SB 3	-20,7 +/	- 0,39	
	sample 2 non treated		-17,2 +/	- 0,96	
	+0,03 % SPINDASOL SB 3		-15,9 +/	- 0,67	d.
	sample 3	non treated	-16,4 +/	- 0,52	
	+0,03 % S	PINDASOL SB 3	-18,9 +/	- 0,56	PUNTIGAMER
Hein	eken [®]	9		9	Arts., bierige" BIR



SEDIMENTATION

De-blending with SPINDASOL SB 3 Determination of sedimentation

Time elapsed for de-blending of the beer sample with various concentrations of SPINDASOL SB 3 at incubation temperatures of 5 °C, 10 °C and 25 °C

Microscopic view and determination of yeast cells

Durchmesser Max: 14.1 µm

messer Max:

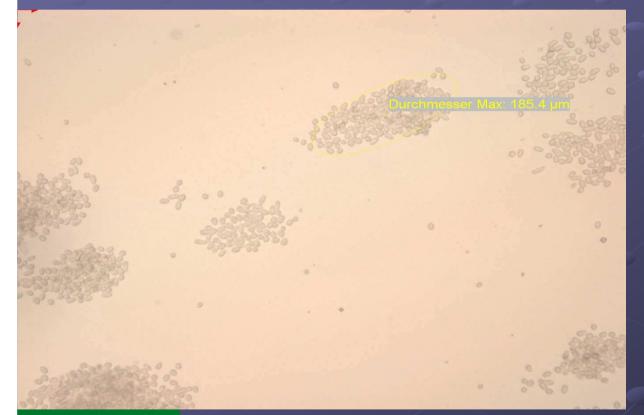
Durchmesser Max: 15.3 μm

Microscopic view of the yeast cells Concentration of SPINDASOL SB 3: 0,0% Incubation temperature: 10 °C Agglomeration of yeast cells: occasional, single yeast cell approx. 15 μm

Heineken[®]

Microscopic view and determination of yeast cells

Microscopic view of the yeast cells after trial with SPINDASOL SB 3 Concentration of SPINDASOL SB 3: 0,03% Incubation temperature: 10 ℃



The Brewers of Europe

EBC Congress 2011 22-26 May 2011, Glasgow

Micrscopic view and determination of yeast cells

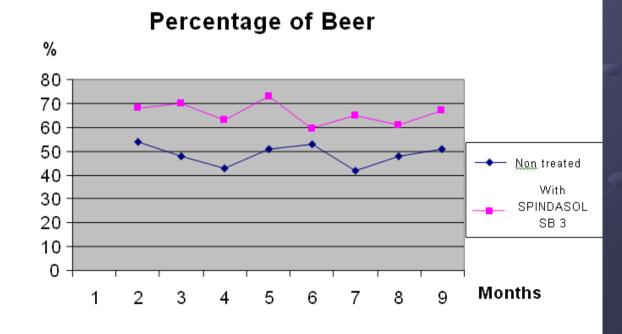
Microscopic view of the yeast cells after trial with SPINDASOL SB 3 Concentration of SPINDASOL SB 3: 0,03% Incubation temperature: 5 ℃

Microscopic view and determination of yeast cells

Durchmesser Max: 13.1 µm

Durchmesser Max: 13.2 µm

Microscopic view of the yeast cells after trial with SPINDASOL SB 3 Concentration of SPINDASOL SB 3: 0,03% Incubation temperature: 25 ℃ Agglomeration of yeast cells: none, yeast cells approx. 13 µm



Results from the Brewery

Standard procedure: from 40.000 hl beer yeast slurry /→ New procedure with SPINDASOL SB 3 → 20.000 hl Beer = 50:50 25.000 hl Beer = 63:37

Discussion of Results

- Influence of process aids with respect to flocculation sedimentation properties was shown
- Van der Wals forces can be assumed responsible for the aggregation of yeast with the flocculant
- No relevant charge on flocculation system
- Problem solving developed on an industrial scale
- Temperature is a limiting factor
- Van der Wals adsorption form adsorptive energy
- Aggregation potential increases with falling ambient temperature and an appropriate sedimentation aid.

Economy

- Extract yields of 0,4% to 0,7% are possible
- For a Brewery of with 1 mil. HI output this results in 4.000 – 7.000 hI racked beer
- Assumption: production cost of beer at EUR 6.-/hl
- Annual saving EUR 24.000 42.000.-
- No substantial investment into hardware
- Yeast slurry concentration moved by 5 7% to a maximum of 19%
- Lower extract losses obtained
- Practically no influence on running costs

Acknowledgements

- Colloidal chemical research performed by the institute of chemical process development and control of the Joanneum Research, Graz, Austria under the management of Prof. Dr. Volker Ribitsch
- Quality control department of Brau Union, Puntigam
- Research and development department of AEB-Group, Brescia, Italy
- Co-author Stephen Wilkinson, Senior Area Manager, AEB-Group, Italy
- More information on this paper from the Author: <u>g.zanker@brauuion.com</u>

Literature

- Instruction Manual for Zetaplus (Zeta Potential Analyzer) ; Brookhaven Instruments Corporation, (1997).
- Supplementary Instruction Manual for Zetapals ; Brookhaven Instruments Corporation.
- Betriebsanleitung f
 ür Brookhaven Instruments 90 Plus (Partikelgrößenmessger
 ät); Brookhaven Instruments Corporation.
- Paar EKA Electrokinetic Analyzer; Operations Manual Part I; Defination and Determination of the Zeta Potential, A. Paar (1991).
- Paar EKA Electrokinetic Analyzer; Bedienungshandbuch Teil 2; Inbetriebnahme und Arbeiten mit dem EKA; , A. Paar (1991).
- Partikelladungsdetektor PCD 02, Bedinungsanleitung, Mütek.
- Mütek PCD Titrationssoftware Version 1.6, Handbuch, Mütek
- Hefequalitaet in ZylindrokonischenTanks BRAUWELT Nr. 14 (2009)

